nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.46 27-36
基于多策略改进麻雀算法的交通信号配时优化研究
基金项目(Foundation): 国家重点研发计划(2017YFC0803901)
邮箱(Email): 2356746525@qq.com;
DOI: 10.13291/j.cnki.djdxac.2025.03.003
摘要:

为了更好地求解非线性多目标联合信号配时优化模型,提出一种多策略的麻雀搜索算法(MS-ISSA)。首先引入Sinusoidal混沌映射,利用其随机性和遍历性的特点有效增加种群的多样性和质量;其次设定动态权重策略,平衡算法的全局探索和局部搜索;最后引入Levy飞行,利用其跳跃性特点探索更多解空间,提高算法的全局寻优能力,并使用9个基准函数对MS-ISSA进行测试,验证了算法的优越性。结合实际案例,应用MS-ISSA求解信号的配时优化模型,对比现状方案、Webster方案、遗传算法(GA)方案和传统的SSA方案,通过MS-ISSA得到的配时方案使延误降低16.8%,汽车尾气排放减少17.9%,交叉口的通行状况得到明显改善,验证了MS-ISSA在交通信号配时优化方面的有效性。

Abstract:

In order to better solve the nonlinear multi-objective joint signal timing optimization model, a multi-strategy sparrow search algorithm(MS-ISSA) is proposed. Firstly, sinusoidal chaotic mapping is introduced to utilize its randomness and traversal characteristics, effectively increasing population diversity and quality. Secondly, a dynamic weight strategy is set to balance the global exploration and local search of the algorithm. Finally, Levy Flight was introduced to explore more solution spaces and improve the algorithm's global optimization ability by utilizing its jumping characteristics. Nine benchmark functions were used to test the superiority of MS-ISSA. Based on practical cases, MS-ISSA was applied to solve the signal timing optimization model. Compared with the current scheme, Webster scheme, genetic algorithm(GA) scheme, and traditional SSA scheme, the timing scheme obtained through MS-ISSA reduced delay by 16.8%,reduced automobile exhaust emissions by 17.9%,and significantly improved the traffic conditions at intersections. This verified the effectiveness of MS-ISSA in optimizing traffic signal timing.

参考文献

[1]PAUL R,MARK V,LILY ELEFTE RIADOU,et al.Highway capacity manual 2010[J].TR news:Transportation Research,2011(3/4):45-48.

[2]李娟,贾庭勇.基于人均延误的交叉口信号配时优化[J].公路交通科技,2021,38(11):134-141.LI J,JIA T Y.Signal timing optimization forintersection based on per capita delay [J].Journal of Highway and Transportation Research and Development,2021,38(11):134-141.

[3]高云峰,徐立鸿,胡华,等.交叉口定周期信号控制多目标优化方法[J].中国公路学报,2011,24(5):82-88.GAO Y F,XU L H,HU H,et al.Multi-objective optimization method for fixed-time signal control at intersection[J].China Journal of Highway and Transport,2011,24(5):82-88.

[4]牟海维,戚先锋,刘彦昌,等.单交叉口多目标联合优化的信号配时研究[J].电子测量与仪器学报,2020,34(9):62-68.MU H W,QI X F,LIU Y C,et al.Research on signal timing of multi-objective joint optimization at single intersection[J].Journal of Electronic Measurement and Instrumentation,2020,34(9):62-68.

[5]甘杨杰.混合交通流环境下交叉口多目标配时优化研究[D].北京:北京交通大学,2016.GAN Y J.Multi-objective optimization of signal timing of urban intersection under the mixed traffic flow[D].Beijing:Beijing Jiaotong University,2016.

[6]任永泰,邓朝,王紫阳.基于PSO-GA算法的交叉口仿真优化研究[J].计算机仿真,2022,39(12):204-208.REN Y T,DENG C,WANG Z Y.Research onsimulation and optimization of intersection based on PSO-GA algorithm[J].Computer Simulation,2022,39(12):204-208.

[7]ZHANG X H,FAN X M,YU S Y,et al.Intersectionsignal timing optimization:A multi-objective evolutionary algorithm[J].Sustainability,2022,14(3):1506.

[8]陈玉如,张容,唐秋生.改进人工鱼群算法的多目标信号配时优化研究[J].重庆理工大学学报(自然科学),2023,37(7):25-33.CHEN Y R,ZHANG R,TANG Q S.Research on multi-objective signal timing optimizationfor improved artificial fish swarm algorithm[J].Journal of Chongqing University of Technology(Natural Science),2023,37(7):25-33.

[9]JIAO P P,LI R M,LI Z H.Pareto front-based multi-objective real-time traffic signal control model for intersections using particle swarm optimization algorithm[J].Advances in Mechanical Engineering,2016,8(8):1-15.

[10]尹聪慧,杨曦,彭强,等.道路交叉口多目标信号配时优化设计[J].武汉理工大学学报,2022,44(8):84-90.YIN C H,YANG X,PENG Q,et al.Multi-objective signal timing optimization scheme design for road intersections[J].Journal of Wuhan University of Technology,2022,4(8):84-90.

[11]WANG J W,HANG J Y,ZHOU X Z.Signaltiming optimization model for intersections in traffic incidents[J].Journal of Advanced Transportation,2020,2020:1081365.

[12]王永圣,朱颖心,赵中雨,等.基于萤火虫算法的交叉口交通灯配时优化研究[J].武汉理工大学学报(交通科学与工程版),2021,45(4):699-703.WANG Y S,ZHU Y X,ZHAO Z Y,et al.Research on intersection traffic light timing optimization based on firefly algorithm[J].Journal of Wuhan University of Technology(Transportation Science & Engineering),2021,45(4):699-703.

[13]黄慧琼.多目标联合优化的信号配时方法应用与仿真[J].广西科技大学学报,2018,29(3):102-107.HUANG H Q.Application and simulation of signal timing method based on multi-objectivejoint optimization[J].Journal of Guangxi University of Science and Technology,2018,29(3):102-107.

[14]伍尚昆,陈翠宜,祝胜林.基于多种群蚁群算法的交叉路口信号配时优化[J].计算机应用与软件,2014,31(5):83-88.WU S K,CHEN C Y,ZHU S L.Timing optimisation for intersection signal based on multi-colony ant algorithm[J].Computer Applications and Software,2014,31(5):83-88.

[15]XUE J K,SHEN B.A novel swarm intelligence optimization approach:Sparrow search algorithm[J].Systems Science & Control Engineering,2020,8(1):22-34.

[16]孙超,郭乃宇,严明蝶,等.改进自适应粒子群算法的PID参数优化[J].中国工程机械学报,2023,21(5):377-382.SUN C,GUO N Y,YAN M D,et al.PID parameter optimization based on improved adaptive particle swarm optimization algorithm[J].Chinese Journal of Construction Machinery,2023,21(5):377-382.

[17]MIRJALILI S.Dragonfly algorithm:A new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27(4):1053-1073.

[18]柴岩,任生.多策略协同优化的改进HHO算法[J].计算机应用研究,2022,39(12):3658-3666.CHAI Y,REN S.Improved HHO algorithm based on multi-strategy cooperative optimization[J].Application Research of Computers,2022,39(12):3658-3666.

基本信息:

DOI:10.13291/j.cnki.djdxac.2025.03.003

中图分类号:U491.54

引用信息:

[1]裴玉龙,杜小敏.基于多策略改进麻雀算法的交通信号配时优化研究[J].大连交通大学学报,2025,46(03):27-36.DOI:10.13291/j.cnki.djdxac.2025.03.003.

基金信息:

国家重点研发计划(2017YFC0803901)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文