基于自适应动态面的高速列车蠕滑速度跟踪控制Slip Velocity Tracking Control for High-Speed Trains based on Adaptive Dynamic Surface
徐传芳;
摘要(Abstract):
为实现高速列车黏着控制中对期望蠕滑速度的精确跟踪,提出了一种新的蠕滑速度跟踪控制方法.首先考虑牵引/制动动态建立了列车黏着控制系统动力学模型,并将其描述为一个串级非线性系统;然后采用动态面控制方法,并引入自适应技术估计列车模型参数和系统集总不确定性上界,设计了基于自适应动态面的高速列车蠕滑速度跟踪控制策略.所设计的控制策略仅需要较少的模型参数,不依赖难以精确测量的列车质量、车轮黏滞摩擦系数、列车基本阻力以及轮轨间黏着力.基于Lyapunov稳定性理论证明了闭环系统的稳定性和蠕滑速度跟踪误差的半全局一致最终有界性.数值仿真结果表明该控制方法可行且有效,能够实现对期望蠕滑速度的精确跟踪.
关键词(KeyWords): 蠕滑速度跟踪;动态面控制;自适应技术;高速列车
基金项目(Foundation): 辽宁省教育厅高等学校科学研究计划资助项目(JDL2020020);; 辽宁省自然科学基金资助项目(20180550835)
作者(Authors): 徐传芳;
DOI: 10.13291/j.cnki.djdxac.2022.01.019
参考文献(References):
- [1]PICHLIK P,ZDENKE J.Locomotive wheel slip control method based on an unscented Kalman filter[J].IEEE Transactions on Vehicular Technology,2018,67(7):5730-5739.
- [2]KANG C,HUANG J,DENG W,et al.Adhesion control method based on optimal slip velocity searching and tracking[C]//2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI),2019:1200-1207.
- [3]YANG W,CAI W,SONG Y.A barrier Lyapunov function (BLF) based approach for antiskid traction/braking control of high speed trains[C]//2014 26th Chinese Control and Decision Conference(CCDC),2014:5023-5028.
- [4]HE J,ZUO X,ZHANG C,et al.Anti-slip control based on optimal slip ratio for heavy-haul locomotives[J].The Journal of Engineering,2019,2019(23):9069-9074.
- [5]CAI W,LI D,SONG Y.A novel approach for active adhesion control of high-speed trains under antiskid constraints[J].IEEE Transaction on Intelligent Transport Systems,2015,16(6):1-10.
- [6]徐传芳,陈希有,郑祥,等.基于动态面方法的高速列车蠕滑速度跟踪控制[J].铁道学报,2020,42(2):41-49.
- [7]KABZINSKI J.Adaptive,compensating control of wheel slip in railway vehicles[J].Bulletin of the Polish Academy of Sciences Technical Sciences,2015,63(4):955-963.
- [8]CHEN Y,DONG H,LU J,et al.A super-twisting-like algorithm and its application to train operation control with optimal utilization of adhesion force[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(11):3035-3044.
- [9]PICHLIK P,BAUER J.Analysis of the locomotive wheel slip controller operation during low velocity[J].IEEE Transactions on Intelligent Transportation Systems,2021,22(3):1543-1552.
- [10]WANG S,ZHANG W,HUANG J,et al.Adhesion control of heavy-duty locomotive based on axle traction control system[J].IEEE Access,2019,7:164613-164622.
- [11]CAI W,LI D,LIU B,et al.Uniform rolling-wear-based robust adaptive control of high-speed trains in the presence of actuator differences[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(12):3591-3601.
- [12]徐传芳,陈希有,丁丽娜,等.输入受约束的高速列车鲁棒自适应动态面控制[J].铁道学报,2020,42(6):56-63.
- [13]SHI XC,CHENG-CHEW LIM,SHI P,et al.Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(11):5200-5213.
- [14]LU D,XIONG C,ZENG Z,et al.Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties[J].IEEE Journal of Oceanic Engineering,2019,45(3):740-758.
- [15]SHIN J.Adaptive dynamic surface control for a hypersonic aircraft using neural networks[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(5):2277-2289.